ЛЕКЦИЯ 13

ВАЛИДАЦИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ. СТЕРИЛИЗУЮЩАЯ ФИЛЬТРАЦИЯ ЖИДКИХ ЛЕКАРСТВЕННЫХ СРЕДСТВ

Валидация документально оформленные действия, которые соответствии с принципами надлежащей производственной практики доказывают, что определенная процедура, процесс, оборудование, исходные материалы, деятельность или система приводят к заранее ожидаемым результатам установленными критериями (ТКП 030-2013. приемлемости «Надлежащая производственная практика»).

Валидация технологического процесса – документированное подтверждение того, что технологический проводимый процесс, В пределах установленных параметров, может эффективно, осуществляться воспроизводимыми результатами приводит к получению лекарственного средства, соответствующего заранее установленным характеристикам качествам.

Основные документы по вопросам валидации технологических процессов: ТКП 030-2013 «Надлежащая производственная практика»; ТКП «433-«Валидация 2012» процессов производства стерильных лекарственных средств»; ТКП «449-2012» «Порядок фильтров для подготовки и контроля стерилизующей фильтрации»; (Parenteral Drug Association) Technical Report 26 "Sterilizing Filtration of Liquids" (1998); ГФ РБ т.1, изд-е 2, р 5.1.

Требования к производству стерильных ЛС:

- Минимальный риск загрязнения микроорганизмами, механическими частицами, пирогенными веществами;
- Производство в классифицированных чистых помещениях и зонах с постоянным контролем степени их загрязненности.

Основные типы технологических операций при производстве стерильных ΠC :

- •Производство с заключительной стерилизацией;
- •Производство в асептических условиях.

Стерилизация — процесс, обеспечивающий полное уничтожение или удаление из объекта всех жизнеспособных форм микроорганизмов.

Заключительная стерилизация — процесс, при котором продукция стерилизуется в герметичной первичной упаковке (ампулах, флаконах, бутылках и др.) и который позволяет проводить измерения и количественную оценку летального воздействия на микроорганизмы.

Если продукция не может быть подвергнута заключительной стерилизации в упакованном виде, все или несколько последних стадий проводятся в асептических условиях.

Асептическое производство совокупность технологических процессов, проводимых в асептических условиях, в т.ч. контейнеров наполнение асептическое продукцией в контролируемой окружающей среде, в которой обеспечение воздухом, материалами, оборудованием и персоналом чтобы регулируется так, микроорганизмами механическими И частицами не выходило за установленные пределы.

К валидации 2-х типов процессов по изготовлению стерильных ЛС применяются принципиально разные подходы:

- Для ЛС, подвергающихся заключительной стерилизации, валидация процесса стерилизации
- Для ЛС, производимых в асептических условиях, валидация процесса стерилизующей фильтрации и асептических операций в целом.

Валидация процесса стерилизации (с использованием влажного пара):

- •разработка цикла стерилизации;
- •аттестация стерилизационного оборудования (в т.ч. с помощью химических и биологических индикаторов);
- •изучение проникания тепла;
- •изучение распределения тепла;
- •выполнение испытаний с биологическими пробами (микробиологический тест с использованием устойчивых микроорганизмов);
- •валидация процесса при непосредственном контакте влажного пара со стерилизуемой нагрузкой;
- •валидация стерилизации и целостности вентиляционных фильтров стерилизатора и др.

Валидация процесса стерилизующей фильтрации

- Для достижения уровня гарантированной стерильности ЛС (SAL) в асептическом производстве применяют:
- системы фильтрации, включающие фильтры стерилизующего уровня для удаления микроорганизмов,
- чистые помещения и локальные зоны, обеспечивающие асептическую среду вокруг этих систем фильтрации.
- Фильтрация процесс удаления жизнеспособных и (или) нежизнеспособных частиц из жидкости путем прохождение через фильтрующий материал.
- Фильтрующий материал пористый материал, через который пропускают жидкость с целью удаления жизнеспособных или нежизнеспособных частиц.
- *Фильтр* фильтрующий материал, установленный в корпус или держатель.
- Фильтрационная система фильтр, оснащенный фильтрационным оборудованием: датчиком, клапаном и др. элементами, соединенными с собранным фильтром.

Стерилизующий фильтр — фильтр, способный в процессе фильтрации удалять из среды микроорганизмы, присутствующие в ней в определенной концентрации.

Требования, предъявляемые к характеристикам и свойствам стерилизующих фильтров:

- способность удерживать микроорганизмы
- отсутствие способности к сорбции компонентов ЛС
- широкая химическая совместимость с различными средами (растворами ЛС)
- способность выдерживать множественные циклы регенерирующих и стерилизационных воздействий
- стойкость к механическим воздействиям
- высокая производительность и др.

Часть требуемых характеристик предоставляется в составе документов производителя фильтров.

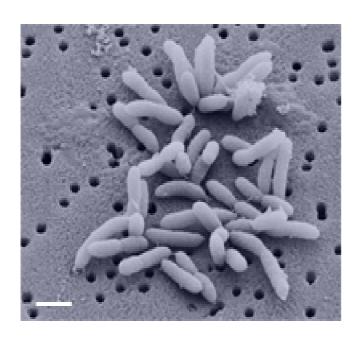
Свойства, которые определяются спецификой применения в конкретных производственных условиях и с конкретными ЛС, должны быть подтверждены (валидированы) пользователем самостоятельно:

- Удерживающая способность фильтра (микробиологические испытания);
- Целостность;
- Химическая совместимость фильтруемой продукции и компонентов системы фильтрации;
- Адсорбционные характеристики.

Удерживающая способность стерилизующего фильтра

Стерилизующий фильтр: размер пор -0.2(0.22) мкм.

Почему не 0,45 мкм?


- В природе встречаются мелкие микробные клетки с размером менее 0,5 мкм (например, микоплазмы). В природных популяциях такие клетки представлены очень слабо и в среднем составляют менее 1% от «обычных» бактериальных сообществ.
- Клетки многих бактерий в угнетенном состоянии при определенных условиях могут значительно уменьшаться в размерах до 0.2-0.3 мкм по сравнению со стандартным размером 0.5-2.0 мкм;

Поэтому для проверки удерживающей способности стерилизующего фильтра используют клетки одной из самых мелких «классических» бактерий — Brevundimonas (Pseudomonas) diminuta:

- Размер клеток, выращенных в стандартных условиях: 0.3 0.4 мкм (ширина), 0.6 1.0 мкм (длина).
- Суспензия таких клеток считается международным промышленным стандартом микробиологических модельных загрязнений для определения эффективности удерживающей способности на мембранах с диаметром пор 0,22 мкм.
- Для проведения валидации процесса стерилизующей фильтрации используют культуру Brevundimonas (Pseudomonas) diminuta ATCC 19146 из американской коллекции типовых культур или другой коллекции контрольных культур (NCIMB 11091, CIP 103020).

Brevundimonas (Pseudomonas) diminuta

Ранее относились к роду Pseudomonas. На основании анализа структуры клеточных белков, состава жирных кислот, последовательности генов рРНК, соотношения оснований ДНК и степени родства ДНК классифицированы в отдельный род - Brevundimonas.

Характеристика.

- Одиночные подвижные аэробные неспорообразующие грамотрицательные мелкие палочки 0,3 0,4 мкм (ширина), 0,6 1,0 мкм (длина), с полярно расположенным единственным жгутиком.
- Экология: окружающая среда воздух, вода. Не считается патогеном, но известны случаи выделения из клинического материала.
- Нуждаются в органических факторах роста: пантотенате, биотине, цианкобаламине, метионине или цистине.
- Не ферментируют ряд углеводов (глюкозу, лактозу и др.). Оксидазаположительны.
- Оптимальная температура роста 30 -35°C

Коммерческие препараты культуры:

- Лифилизированный микроорганизм в форме желатиновых или лиофилизированных дисков (гранул, таблеток), упакованных во флакон.
- Флакон содержит осушитель с целью предотвращения скопления влаги.
- Условия хранения от $+2^{\circ}C$ до $+8^{\circ}C$ (или при других условиях, оговоренных руководством по работе со штаммом).

В целях использования для валидации процесса стерилизующей фильтрации культуру выращивают на жидкой и агаризованной среде на основе гидролизата казеина и соевых бобов (соево-казеиновый агар — СКА и соево-казеиновый бульон - СКБ).

На агаризованной среде СКА колонии округлые, выпуклые, гладкие, глянцевые, с ровным краем. Цвет колоний — светлобежевый, иногда с серовато-желтым оттенком. На 24 ч. роста колонии становятся видимыми, точечными. На 48 ч. роста диаметр колоний 2,0 - 2,5 мм; на 72 ч. роста — 3,0 - 3,5 мм.

Восстановление культуры

- Перед началом работы с культурой в желатиновых или лиофилизированных дисках (гранулах, таблетках) закрытый флакон с культурой достают из холодильника и выдерживают 15 20 мин. при комнатной температуре, чтобы при открытии не произошло конденсации воды во флаконе.
- Стерильным пинцетом достают один диск (гранулу, таблетку) и помещают в 0,5 1,0 мл стерильной жидкости (раствор натрия хлорида изотонический, СКБ). Флакон немедленно закупоривают и возвращают в место хранения (+2°C +8°C).
- Диск (гранулу, таблетку) суспендируют, из полученной суспензии стерильной микробиологической петлей делают посев истощающим штрихом на СКА в чашке Петри до получения изолированных колоний. Чашки Петри инкубируют при 30 35°C в течение 48 72 ч.

- По истечении срока инкубирования определяют макроскопические и микроскопические характеристики.
- Макроскопические характеристики: визуально
- Микроскопические характеристики: с использованием светового микроскопа, имеющего калиброванный окуляр-микрометр рассматривают микроорганизмы нескольких полях зрения микроскопа размеров ДЛЯ оценки ИХ И расположения.
- Дополнительно готовят окрашенный препарат для подтверждения принадлежности к грамотрицательным бактериям и идентификации жгутиков
- Физиолого-биохимическая идентификация.

Поддержание культуры

- Изолированные колонии пересевают на скошенную агаризованную среду СКА в пробирках и инкубируют в течение 48-72 ч. при температуре 30 35°C.
- Выросшую культуру хранят температуре от +2°C до +8°C не более суток. По истечении указанного времени хранения культуру скошенную пересевают на CKA агаризованную среду пробирках. Инкубируют хранят аналогичным образом.
- Количество пассажей не должно превышать пяти.

Фильтр классифицируется как стерилизующий, если он выдерживает бионагрузку в виде клеток Brevundimonas diminuta в количестве не менее 10⁷ КОЕ/см² эффективной площади фильтра и обеспечивает стерильный поток на выходе.

Бионагрузка (биологическая нагрузка) — популяция жизнеспособных микроорганизмов в жидкости до стадии стерилизующей фильтрации.

Концентрация Brevundimonas diminuta 10⁷ КОЕ/см² эффективной площади фильтра — биологическая нагрузка (провокационная нагрузка, микробный вызов).

<u>Почему 10⁷ КОЕ/см² ?</u>

Фильтр может иметь некоторое количество более крупных пор по сравнению с номинальным размером и потенциально может пропускать микроорганизмы. Вероятность такого пропускания увеличивается по мере повышения бионагрузки в фильтруемом материале.

Реальная бионагрузка растворов ЛС, подлежащих фильтрации, как правило, не содержит микроорганизмы меньших размеров и в большей концентрации, чем провокационная нагрузка, применяющаяся при валидационных испытаниях. В большинстве случаев допустимой концентрация стерилизуемой микроорганизмов в жидкости 10 КОЕ/100 мл.

Проверка удерживающей способности стерилизующего фильтра проводится с учетом реальных условий производства лекарственного средства:

- Путем инокуляции суспензии микроорганизма в раствор конкретного лекарственного средства (прямая инокуляция), т.к. его компоненты могут оказывать воздействие как на материал фильтра, так и на микроорганизм. Допускается использовать 10% от реального объема стандартной серии препарата.
- В течение времени фильтрации объема стандартной серии ЛС
- При давлении и скорости потока, соответствующих таковым в условиях реального производства ЛС
- С учетом температуры фильтрации (если температура раствора ЛС не оказывает влияния на жизнеспособность тест-микроорганизма)

Прямая инокуляция суспензии Brevundimonas diminuta в ЛС позволяет оценить эффект ЛС на материал фильтра и микроорганизм. Однако, прямая инокуляция часто невозможна из-за антимикробных свойств ЛС в отношении тестмикроорганизма.

Поэтому до проведения валидационных испытаний необходимо определить наличие/отсутствие антимикробного действия ЛС в отношении Brevundimonas diminuta.

Определение антимикробного действия раствора лекарственного средства в отношении тест-микроорганизма Brevundimonas diminuta

Условия проведения испытания:

- Температура соответствует темепературе фильтрации препарата в условиях производства (как правило комнатная 22±2 °C)
- Время экспозиции соответствует времени фильтрации препарата в условиях производства
- Количество КОЕ микроорганизма, вносимое в испытуемые растворы, соответствует минимальной бионагрузке на стерилизующий фильтр не менее $10^7\,\mathrm{KOE/cm^2}$

Процедура:

1.Приготовление испытуемого и контрольного растворов:

Испытуемый раствор — в раствор лекарственного средства вносится суспензия тестовой культуры.

Контрольный раствор — в стерильный раствора натрия хлорида изотонического (стерильный забуференный раствор натрия хлорида и пептона рН 7,0) вноситься суспензия тестовой культуры.

Количество КОЕ, вносимое в опытный и контрольный растворы, рассчитывается по формуле:

$$X = \frac{N \times S \times V_1}{V_2}$$

где:

N — биологическая нагрузка (КОЕ) на 1cm^2 фильтра в количестве не менее 10^7 КОЕ.;

S – площадь фильтра см²;

 V_1 - объем испытуемого раствора ЛС, л; V_2 - объем раствора, пропускаемого через фильтр в условиях реального производства или при валидации процесса, л;

Опытный И контрольный растворы, суспензией инокулированные микроорганизма, выдерживают при температуре (22±2)°С в течение времени, равном длительности процесса стерилизующей фильтрации определенного лекарственного средства в условиях производства.

- 2. Определение антимикробного действия ЛС в отношении Brevundimonas diminuta:
- Определяют количество КОЕ микроорганизма в 1 мл обоих растворов на:
- нулевую точку (непосредственно после внесения тест-микроорганизма),
- среднюю точку (соответствует ½ времени фильтрации лекарственного средства)
- конечную точку фильтрации (соответствует времени полной фильтрации лекарственного средства).

Метод: серия последовательных десятикратных разведений опытного и контрольного образцов в том же растворителе. Из каждого разведения высевают по 0,1 мл в две параллельные чашки Петри с агаризованной средой СКА. Чашки инкубируют при температуре 30 - 35°C в течение 48-72 ч.

- Производят подсчет числа выросших колоний, рассчитывают количество КОЕ Brevundimonas diminuta в 1 мл испытуемого и контрольного растворов и находят логарифмы (lg) полученных значений.
- Определяют разницу логарифмов КОЕ/мл между контрольным и испытуемым растворами:
- если разница логарифмов (lg) составляет менее 1, подтверждается выживаемость культуры Brevundimonas diminuta и отсутствие антимикробного действия лекарственного средства в условиях испытания;
- если разница логарифмов составляет 1 и более лекарственное средство обладает антимикробным действием.

Определение антимикробного действия ЛС в отношении Brevundimonas diminuta

t экспо	Результат испытания											
	Контрольный образец					Испытуемый образец					Раз- ность lg	
зиции (ч)	Разведение 10-5					Разведение 10-5						
	Чашка 1 (число колоний)	Чашка 2 (число колоний)	Среднее значение	КОЕ/мл	lg КОЕ/мл	Чашка 1 (число колоний)	Чашка 2 (число колоний)	Среднее значение	КОЕ/мл	lg КОЕ/мл		
0 t	36	39	37,5	3,75 x 10 ⁷	7,5740	40	34	37	3,7 x 10 ⁷	7,5682	0,0058	
½ t	41	35	38	3,8 x 10 ⁷	7,5797	33	39	36	3,6 x 10 ⁷	7,5563	0,0234	
t	35	38	36,5	3,65 x 10 ⁷	7,5623	23	27	25	2,5 x 10 ⁷	7,3979	0,1644	

Вывод: Лекарственное средство не обладает антимикробным действием

- 3. Условия проведения валидации (определение удерживающей способности):
- А. Если ЛС не обладает антимикробным действием при валидации осуществляют прямую инокуляцию тест-микроорганизма в раствор ЛС;
- Б. Если ЛС обладает антимикробным действием необходимо:
- Изменить условия процесса:
 - снизить температуру раствора
- -сократить время экспозиции системы «раствор- микроорганизм»
- Использовать модельную среду:
- снизить концентрацию или удалить из раствора ЛС соединения, обладающие антимикробным действием
 - скорректировать рН

Требования к модельной среде - максимально имитировать состав и свойства фильтруемой среды:

- pH
- вязкость
- ионную силу
- -осмолярность и др.
- •Если модельная среда представляет собой раствор одного компонента
- -фильтруют ЛС через мембранный фильтр (наихудший случай),
- фильтр промывают,
- фильтруют модельный раствор (растворитель), не содержащий антимикробные компоненты.

Cnocoбы приготовления суспензии Brevundimonas diminuta для валидации процесса стерилизующей фильтрации

- 1. Используют желатиновый (лиофилизированный) диск (таблетку, гранулу) либо микробную массу со скошенной агаризованной среды (СКА);
- 2. Асептически вносят в жидкую среду (СКБ);
- 3. Культивируют с аэрацией при темепературе 30-35°C
- 4. Критерий приемлемости титр по окончании культивирования должен составлять $10^9 10^{10}$ КОЕ/мл;
- 5. Режим приготовления суспензии Brevundimonas diminuta для валидации процесса стерилизующей фильтрации устанавливается заранее.

Идентификация размера клеток и однородности суспензии Brevundimonas diminuta

- ✓ Необходимость процедуры вызвана:
- возможностью наличия в суспензии клеток, размеры которых превышают приемлемые значения;
- способностью клеток к агрегации.
- ✓ Методы:
- Микроскопирование окрашенных по Граму препаратов:
- Световой микроскоп, оснащенный калиброванным окуляр-микрометром и масляно-иммерсионным или суховоздушным объективом с высокой разрешающей способностью.
- Рассматривают микроорганизмы в нескольких полях зрения для оценки их размеров и расположения.
- Фильтрация через фильтр с диаметром пор 0,45 мкм
- 10 мл приготовленной суспензии фильтруют через шприцевые фильтрующие насадки (размер пор 0,45 мкм), фильтрат добавляют в 100 мл СКБ, инкубируют 24 48 ч. при температуре 30 35 °C с аэрацией.
- По истечении инкубации наличие роста (визуальное) свидетельствует о присутствии в приготовленной суспензии микроорганизмов с размером до 0,4 мкм в ширину.
- Для подтверждения присутствия в суспензии монокультуры Brevundimonas diminuta проводят микроскопирование мазков, окрашенных методом Грама и методом, позволяющим идентифицировать жгутики.

Регистрация приготовления суспензии Brevundimonas diminuta

Процедуру приготовления суспензии Brevundimonas diminuta для валидации стерилизующеей фильтрации, регистрируют в соответствующих протоколах. Например:

- Протоколе приготовления суспензии Brevundimonas diminuta;
- Протоколе определения титра жизнеспособных клеток в суспензии Brevundimonas diminuta;
- Протоколе идентификации размера клеток и однородности cycneнзии Brevundimonas diminuta.

Pacчет объёма суспензии Brevundimonas diminuta, обеспечивающего необходимую бионагрузку.

Объём бактериальной суспензии, например, с титром 10^9 , необходимый для проведения валидации стерилизующей фильтрации (удерживающей способности фильтра), рассчитывают исходя из активной площади фильтра и минимальной нагрузки на 1 см^2 этой площади (не менее 10^7 КОЕ/см^2).

Например, если площадь фильтра -0.8 м^2 :

$$V = \frac{10^{7} (KOE / cm^{2}) \cdot 0.8 \cdot 10^{4} (cm^{2})}{10^{9} (KOE / m\pi)} = 80 m\pi,$$

Где: $10^7 \, \text{KOE/cm}^2$ - минимальная нагрузка на 1 см² активной площади фильтра; $0.8 \cdot 10^4 \, \text{cm}^2$ - активная площадь фильтра (т. е. $0.8 \, \text{m}^2$);

10° КОЕ/мл - титр Brevundimonas diminuta в 1 мл приготовленной суспензии

Таким образом, для обеспечения необходимой минимальной нагрузки на фильтр площадью $0.8~{\rm M}^2$ требуется не менее $80~{\rm M}$ л суспензии Brevundimonas (Pseudomonas) diminuta в бульоне на основе гидролизата казеина и соевых бобов с титром $10^9~{\rm KOE/M}$ л

Расчет бактериальной (предстерилизационной) нагрузки раствора лекарственного средства (модельного раствора)

- 80 мл приготовленной суспензии Brevundimonas diminuta с содержанием в 1 мл 10⁹ КОЕ вносят в раствор ЛС (10%•V), при этом минимальная нагрузка на 1 см² активной площади фильтра составляет 10⁷ КОЕ/ см² при площади фильтра 0,8 м².
- Суммарная нагрузка на фильтр площадью 0.8 м^2 составляет: $80 \text{ мл} \cdot 10^9 \text{ КОЕ/мл} = 8 \cdot 10^{10} \text{ КОЕ}.$
- (10%•V) л приготовленной суспензии Brevundimonas diminuta в растворе ЛС содержит 8 · 10¹⁰ КОЕ культуры Brevundimonas diminuta
- Количество КОЕ в 1 мл приготовленного раствора бактериальная (предстерилизационная) нагрузка раствора лекарственного средства (модельного раствора) составляет:

$$\frac{8 \cdot 10^{10} \text{KOE}}{(10\% \cdot \text{V}) \cdot 10^3 \text{ мл}}$$
, KOE/мл

где: $((10\% \bullet V) \bullet 10^3 \text{ мл})$ – объем раствора ЛС или модельного раствора в мл

Пример расчета бактериальной (предстерилизационной) нагрузки для различных объемов лекарственных средств для фильтра площадью 0,8 м²:

Стандартный объем серии ЛС, л	(10%•V), л	Бактериальная (предстерилизационная) нагрузка, КОЕ/мл
250	25	$\frac{8 \cdot 10^{10} \text{ KOE}}{25 \cdot 10^3 \text{ мл}} = 0.32 \cdot 10^7$
215	21,5	$\frac{8 \cdot 10^{10} \text{ KOE}}{21,5 \cdot 10^3 \text{ мл}} = 0,37 \cdot 10^7$

Метод определения предстерилизационной нагрузки (титра жизнеспособных клеток в суспензии Brevundimonas diminuta)

- Метод десятикратных разведений в стерильном 0,9% раствор натрия хлорида. Из пробирок с десятикратными разведениями суспензии культуры (10⁻⁷, 10⁻⁸ и 10⁻⁹) делают высевы по 0,1 мл суспензии в чашки Петри с агаром на основе гидролизата казеина и соевых бобов. Для каждого разведения используют не менее 2-х чашек Петри. Чашки инкубируют при температуре 30 35°C в течение 48 72 ч., после чего проводят учет результатов.
 - Параллельно осуществляют контроль чистоты культуры.
 - -Число жизнеспособных клеток в 1 мл исходной суспензии рассчитывают следующим образом:
- $x = a \cdot 10^{n} \cdot 10$, где
- х титр клеток (КОЕ/мл),
- а среднее число выросших колоний в чашке Петри для каждого разведения,
- n степень соответствующего разведения,
- 10 коэффициент пересчета для перевода 0,1 мл в 1 мл.

Полученное значение должно соответствовать рассчитанному.

Проведение валидации (определение удерживающей способности)

- 1. Приготовление испытуемого раствора ЛС и/или модельного раствора (10% от V);
- 2. Приготовление суспензии Brevundimonas diminuta с титром не менее 10⁹КОЕ/мл определение размера клеток и однородности суспензии;
- 3. Инокуляция раствора ЛС или модельного раствора суспензией Brevundimonas diminuta с учетом обеспечения бионагрузки не менее 10⁷KOE/см² полезной площади стерилизующего фильтра;
- 4. Определение предстерилизационной бионагрузки;
- 5. Проведение процесса стерилизующей фильтрации;
- 6.Контроль стерильности раствора после проведения стерилизующей фильтрации путем высева пробы в жидкую питательную среду (СКБ).

Критерий приемлемости: фильтраты должны быть стерильны.

7. Валидацию проводят на трех сериях ЛС (модельных растворов).

Документирование процедуры:

- Разработка плана валидации, в котором содержится:
- подробное изложение цели и общей стратегии,
- характеристика валидируемого объекта,
- состав валидационной группы, обязанности и ответственность за этапы валидации,
- условия проведения валидации,
- контролируемые показатели и критерии приемлемости,
- порядок проведения испытаний,
- перечень отчетов и протоколов.
- Составление письменного отчета о проведении валидации: в соответствии с протоколом валидации.

Микробиологический мониторинг производственной среды, контроль количества частиц в воздушной среде помещения стерилизующей фильтрации.

Мониторинг проводится:

- 1. В оснащенном состоянии (до начала процесса стерилизующей фильтрации, когда оборудование и помещение готовы к работе и персонал отсутствует):
- контроль рук и технологической одежды сотрудников;
- контроль материалов, внесенных в помещение фильтрации для отбора проб;
- контроль количества частиц.

•

- 2. В функционирующем (эксплуатируемом) состоянии (все системы помещения и технологическое оборудование функционируют установленным образом в присутствии необходимого количества персонала, выполняющего процесс):
- контроль воздушной среды;
- контроль рук и технологической одежды аппаратчика;
- контроль количества частиц.